Prediction interval for an individual y
A prediction interval is an interval estimate of a predicted value of y.
When an x is used to predict \hat{y} from the regression line an interval can be calculated to a confidence interval for y

$$
\begin{gather*}
s_{e}=\sqrt{\frac{\sum(y-\hat{y})^{2}}{n-2}} \tag{29}\\
M E=t_{\alpha / 2} s_{e} \sqrt{1+\frac{1}{n}+\frac{n\left(x_{0}-\bar{x}\right)^{2}}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}} \tag{30}
\end{gather*}
$$

where x_{0} denotes the given x value, $t_{\alpha / 2}$ has $n-2$ degrees of freedom, s_{e}.

$$
\begin{equation*}
(\hat{y}-M E, \hat{y}+M E) \tag{31}
\end{equation*}
$$

Example 5: What is the best predicted number of people in a household that discards 50 lb of garbage? Use $\alpha=0.05$ therefore $\alpha / 2=0.025$ and $s_{e}=0.6283$. $d f=n-2=62-2=60$. This implies $t_{\alpha / 2}=2.000, n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}=4.52, \bar{x}=27.4$.

1. NOTE x value
2. CALCULATE (Point Estimate $(P E) \hat{y}$
3. DETERMINE $t_{\alpha / 2}$
4. CALCULATE/NOTE s_{e}
5. CALCULATE $M E$
6. $L B=P E-M E$
7. $U B=P E+M E$
8. Interpretation: We are $1-\alpha \%$ confident that the true number \hat{y} for x is between $L B$ and $U B$.

What is the difference between a prediction interval and a confidence interval?

11.2.1 Multiple Linear Regression

Since I was younger I've been making the best out of nothing. - Cameron Jibril Thomaz

The regression line using the population parameters can be seen as:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{1} x_{2 i}+\beta_{1} x_{3 i}+\cdots+\beta_{j} x_{j i}
$$

Estimates of regression line:

- β_{0} : population y-intercept parameter
- β_{1} : population $1^{\text {st }}$ slope parameter
- β_{2} : population $2^{\text {nd }}$ slope parameter
- β_{3} : population $3^{\text {rd }}$ slope parameter
- β_{j} : population $j^{\text {th }}$ slope parameter

The regression line using the sample estimates can be seen as:

$$
y_{i}=b_{0}+b_{1} x_{1 i}+b_{1} x_{2 i}+b_{1} x_{3 i}+\cdots+b_{j} x_{j i}
$$

Estimates of regression line:

- b_{0} : sample y-intercept estimate
- b_{1} : sample $1^{\text {st }}$ slope estimate
- b_{2} : sample $2^{\text {nd }}$ slope estimate
- b_{3} : sample $3^{\text {rd }}$ slope estimate
- b_{j} : sample $j^{\text {th }}$ slope estimate

The Adjusted R^{2} - proportion of variance accounted by the model, however, it is modified to account for the number of variables and the sample size.

$$
\begin{equation*}
\text { adjusted } R^{2}=1-\frac{(n-1)}{n-k-1}\left(1-R^{2}\right) \tag{32}
\end{equation*}
$$

where n is the sample size and k is the number of predictors

11.2.2 Hypothesis Testing for $\beta^{\prime} s$

Process for Hypothesis Testing for this class:

1. Identify and State the Statistical Question

- Determine the variable(s) of interest
- Determine the type variable(s) (i.e., quantitative or qualitative): slope(s) are always quantitative (in this class)
- Identify and state the hypotheses (Null and Alternative Hypotheses) based on the question at hand
$-H_{0}: \beta_{j}=0$ and $H_{1}: \beta_{j}>0$
$-H_{0}: \beta_{j}=0$ and $H_{1}: \beta_{j}<0$
$-H_{0}: \beta_{j}=0$ and $H_{1}: \beta_{j} \neq 0$

2. Identify and state level of significance α (the probability of rejecting the H_{0} when H_{0} is true): will be given to you, if not assume $\alpha=0.05$

Really IMPORTANT:

- α :
- $d f=n-2$
- Critical Value:

3. Perform Statistical Test and Interpret Results

$$
\begin{equation*}
T S=t=\frac{b_{j}}{\frac{s_{e}}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)}}} \tag{33}
\end{equation*}
$$

where

$$
s_{e}=\sqrt{\frac{\sum(y-\hat{y})^{2}}{n-2}}
$$

- Test Statistic:
- p-value:

4. State the sample, null hypothesis, test that was used, and conclusion with non-statistical terms

11.2.3 Confidence Interval for $\beta^{\prime} s$

1. Define α
2. Find $\alpha / 2$
3. Find the critical value $\left(C V=t_{\alpha / 2}\right)$ and $d f=n-2$ that corresponds to $\alpha / 2$
4. Standard Error (SE)

$$
\begin{equation*}
S E=s_{e} \sqrt{\frac{1}{n\left(\sum x^{2}\right)-\left(\sum x\right)}} \tag{34}
\end{equation*}
$$

5. Find Margin of Error $(M E=S E x C V)$
6. Lower Bound $L B=P E-M E$
7. Upper Bound $U B=P E+M E$
8. Interpretation: We are $1-\alpha \%$ that the true slope is within this interval. OR. We are $1-\alpha \%$ that the true slope is within the $L B$ and $U B$.

11.2.4 Assumptions about Regressions

Important Assumptions:

1. There is a linear relationship between x and y, the errors all are near 0 (linear trend in Scatter Plot)
2. The residuals all have the same/constant variance (no pattern in Residual Plot)
3. The residuals are independent from each other
4. The residuals are normally distributed
